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Kinetic Monte Carlo simulations of binary alloy film growth
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Abstract. Using kinetic Monte Carlo simulations of film growth with simple models, we have
examined A0.5B0.5 film growth in 2 + 1 dimensions and have compared it with new results for
monatomic film growth. On the basis of data on the domain size, long-range order in each layerl,
and surface fluctuations we examine the dynamic relation between surface-induced domain growth
and growth-induced surface roughening.

1. Introduction

One of the great developments of the 21st century will surely be the rise of ‘designer’ materials,
often on the nanoscale or mesoscale. It is thus clear that the understanding of the nature
of film growth by modern methods such as molecular beam epitaxy (MBE) presents an
important challenge from both fundamental and technological perspectives. Furthermore,
it is likely that a combination of experiment, theory, and computer simulation will be
needed to produce the requisite understanding. Many studies have already been made in an
attempt to understand growth-induced surface roughening and the underlying mechanisms
of thin-film growth [1, 2], but most often only simple discrete models of homoepitaxial
film growth have been simulated, primarily to study surface fluctuations, structure factors,
and height–height correlations. Phenomenological continuum growth equations have been
also derived from symmetry arguments and analysed by renormalization group methods or
numerical calculations; however, detailed mechanisms of binary alloy (AxB1−x) film growth
and consequences of surface roughening processes are less well understood. There have been
experimental observations of atomic ordering in alloy films of Si1−xGex [3], Al xGa1−xAs [4],
Gax In1−xAs [5], and Gax In1−xP [6,7] grown by epitaxial techniques. The degree of long-range
order observed in the experiments is strongly affected by the properties of the materials used
and epitaxial conditions (e.g., surface temperature [3,8], growth rate [9]).

Experiments indicate that the ordering takes place near the surface exposed to the incoming
particle-beam flux and show that the presence of the long-range order (LRO) is mainly due to
surface phenomena and cannot be explained by the bulk or equilibrium properties. The ordering
is a metastable state which is irreversibly destroyed by annealing although it is sustained up
to a rather high temperature if bulk diffusion is negligible [3]. Thus, one interesting question
is that of how growth-induced atomic ordering in metallic alloys [10, 11] and compound
semiconductors [3–5,8,12] is related to the growth-induced surface roughening process during
the film growth. A kinetic mean-field calculation [13, 14] shows that the morphology of the
films affects the evolution of the LRO. Simulations of a(1+1)-dimensional binary alloy model
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also show the interplay between pattern formation and kinetic roughening [15]. The scaling
result of surface roughness in the growth of Si1−xGex on Si [16] indicates that at large length
scales surface morphology is well described by Edwards–Wilkinson (EW) [17] behaviour.

Here we report the results of the surface-induced domain growth and the growth-induced
surface roughening for a simple model of binary alloy films grown by molecular beam epitaxy
(MBE) simulations. We do not attempt to include full physical complexity but deal with rather
simple models which we hope will exhibit the essential features of the system.

2. Background

A theoretical description of pattern formation for the case of a non-conserved order parameter
(NCOP) is known as model A [18]. Experiments and theoretical studies for the NCOP [19,20]
show that the average domain sizeR(t) grows as a power law in time, i.e.,

R(t) ∼ tφ (1)

whereφ = 1/2 is the characteristic exponent. On the other hand, for the case of a conserved
scalar order parameter, the exponentφ = 1/3. The structure factorSD(k, t) for domain growth
is defined as

SD(k, t) = (1/Ld)
∑
r

〈ψ(r, t)ψ(0, t)〉 e−ik·r = R(t)dsD(kR(t)) (2)

in d dimensions, whereψ(r, t) is the local order parameter,k is a wave vector withk = |k|,
L is the lateral system size, andsD(kR(t)) is a scaling function. For a NCOP the mean square
domain size can be simply defined as

R2(t) =
〈

1

N

[
N∑
r

ψ(r, t)

]2〉
(3)

with total number of particlesN , which corresponds to thek = 0 peak ofSD(k, t) [21].
The growth-induced surface roughening of a growing film is usually characterized by the

interfacial width

w(L, t) = 〈[h(r, t)− 〈h(t)〉]2〉1/2 ∼ Lζf (t/Lz) (4)

whereh(r, t) is the height at lateral positionr and timet and

〈h(t)〉 = (1/L2)
∑
r

h(r, t).

ζ andz in the scaling form [22] given in equation (4) are the roughness and dynamic exponent,
respectively. The scaling functionf (x) ∼ xζ/z for x � 1 and approaches a constant for
x � 1. For 1� t � Lz, w(t) ∼ tβ with the growth exponentβ = ζ/z, and the lateral
correlation lengthξ(t) ∼ t1/z. The structure factor

S(k, t) = (1/Ld ′)
∑
r

[〈h(r, t)h(0, t)〉 − 〈h(t)〉2] e−ik·r ∼ k−γ s(kzt) (5)

and the scaling form given in equation (5) is valid in the long-wavelength limit withγ = 2ζ+d ′,
whered ′ (d ′ = d − 1) is the substrate dimension. The scaling functions(x) ∼ constant for
x � 1 and in the case ofx � 1, s(x) ∼ x for γ > z ands(x) ∼ xγ/z for γ 6 z [23]. Thus,
the saturated structure factor isS(k) ∼ k−γ with γ = z if the growth process can be described
by a Langevin equation. When the surface mass current isJ = −ν∇h, one obtains the EW
equation,∂h/∂t = ν ∇2h + η, which yieldsζ = 0 andz = 2 in d ′ = 2 dimensions [17].
If the main relaxation process is surface diffusion, i.e.,J ∝ ∇(∇2h), then one can obtain
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Mullins–Herring (MH) equation,∂h/∂t = −κ ∇4h + η [24] with ζ = 1 andz = 4 in d ′ = 2
dimensions [25]. It has been suggested that the hyperscaling relation [26]

z = 2ζ + d ′ (6)

holds for any growth model described by the continuum Langevin equation.

3. Model and method

The simplest situation in heteroepitaxial film growth is when A-type material grows on a
substrate of material B as in the growth of Ge on a Si substrate. For simplicity, in the
following we shall ignore the lattice mismatch between the substrate and the growing ad-
layer. In molecular beam epitaxy (MBE), particles are randomly deposited at a given rate
(F ), in units of monolayers per second (ML s−1), on an initially flat substrate maintained with
a fixed temperature (T ) and then diffuse around the surface; the diffusion rate (D) denotes
the number of attempts at surface diffusion per site per second. In our kinetic Monte Carlo
MBE simulations, we consider a(2+1)-dimensional simple solid-on-solid model in which the
substrate is anL×L square lattice with periodic boundary conditions. Vacancies, overhangs,
and desorption from the surface are not allowed. For binary alloy film growth, the deposition
rate of A-type particles isxF , while for B it is (1− x)F , wherex is the concentration of
A particles. We have used an A-type substrate to mimic the growth of Si1−xGex on Si and
deposited A and B particles with equal probability, i.e., we restrict ourselves tox = 0.5.

A particle is randomly chosen for surface diffusion after random deposition of A and
B particles according to the fluxF and the concentrationx. The probability(PH) of some
diffusion event occurring is given by

PH = exp[−E(A,B)/kBT ] (7)

where a site-dependent activation energyE(A,B) is determined by the local configurations of
bonding between the nearest neighbours, i.e.,E(A,B) = nAAJAA + nBBJBB + nABJAB where
nAA , nBB, andnAB are the number of A–A, B–B, and A–B pairs with nearest neighbours,
respectively.JAA , JBB, andJAB are effective A–A, B–B, and A–B bond energies.

After breaking the bonds, depending upon the model used, a particle at themth site
may either diffuse randomly including moving up or down (UDR model) with the constant
transition probabilityPD = 1/4 to any of the nearest-neighbour sites, or diffuse randomly to
a nearest-neighbourkth site with the preferential probability (UDP model)

PD(m→ k) ∝ exp[Ek(A,B)/kBT ] (8)

whereEk(A,B) is the binding energy available at thekth site. In order to study atomic
ordering observed in a variety of binary alloy films, we have used antiferromagnetic-like
effective interactions. In a preferential binary alloy (PBA) model, we used the interactions
(JAA , JBB, JAB) = (0.3, 0.3, 1)J , but in a restricted preferential binary alloy (PBA) model
in which particles hop up no more than one lattice constant, we used the interactions
(JAA , JBB, JAB) = (−1,−1, 1)J , whereJ > 0. We have also considered a random binary
alloy (RBA) model, which is an UDR model, with the same interactions as in the PBA model,
to see the effect of a change in a diffusion rule. Thus, an A-type (B-type) particle tends
to make a bond with a B-type (A-type) particle due to those interactions. Note that when
the concentrationx = 1, the PBA and RBA models correspond to monatomic UDP and UDR
models, respectively. The first homoepitaxial version was reported in EWSSW94 for the down
preferential (DP) and UDP models [27], and we now extend the calculations to consider the
case of random diffusion and to the treatment of binary alloy film growth, hoping to capture the
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essential features of the non-equilibrium behaviour of domain growth and surface roughening.
We do not expect these simple models to provide a quantitative description of a physical alloy
film.

The growing binary alloy model can be described in terms of a spin-1 Ising model [28].
Thus, if the r-site at a layer numberl is occupied by an A (B) atom at timet , then
σ(r, l) = 1 (−1). Otherwise the site is empty andσ(r, l) = 0. There are many site updatings
due to the deposition and diffusion, so all the spin configurations inside the bulk must be
recorded. After the long-range order (LRO) reaches its asymptotic value, we turned off the
flux and quenched the system. The quenched LRO and the mean square quenched order are
defined as

M(l) =
〈

1

L2

∣∣∣∣∣∑
r

(−1)rσ(r, l)

∣∣∣∣∣
〉

(9)

M2(l) =
〈[

1

L2

∑
r

(−1)rσ(r, l)

]2〉
(10)

where ∑
r

(−1)r =
L∑
i=1

L∑
j=1

(−1)i+j

with r = ix̂ + j ŷ andσ(r, l) can be 1 (or−1) if an A (or B) atom occupies the site because of
the assumption of no overhangs and no vacancies. The definition of the LRO is equivalent to
that of the staggered magnetization in a magnetic system. The mean square quenched order
M(l)2 has been calculated up to the maximum layer numberlm for which the layer is entirely
filled.

It has been shown [29] that the domain size at the layer numberl may be defined as the
k = 0 peak of structure factorSD(k, l), i.e.,SD(0, l), where

SD(k, l) = (1/L2)
∑
r

〈ψ(r, l)ψ(0, l)〉 e−ik·r

with ψ(r, l) = (−1)rσ(r, l). In analogy to equation (3), we define the mean square domain
size as

R2(l) = L2M2(l). (11)

The domain sizeR(l) is also related to the domain growth exponentzD at late times:

R(l) ∼ l1/zD (12)

based on the self-similar behaviour of the domain growth.
Simulations have been carried out for 106 L 6 160 with the different number of layers

grown depending on the system sizeL using IBM RS6000 and Pentium workstations. The
growth was repeated with different random numbers and results were averaged to reduce the
statistical errors.

4. Results

4.1. Results for homoepitaxial growth

The behaviour of the monatomic UDP model appears to be the same as for the atomistic version
of the Edwards–Wilkinson model, i.e. the growth of the interfacial width is logarithmic with
time, and the dynamic exponent isz = 1.6 for the data shown in figure 1(a). The behaviour
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Figure 1. (a) Variation of the interfacial width with time for the monatomic UDP model. The solid
line is a guide withw(t) ∼ log t . The inset showsw2

s(L) ∼ logL. (b) Variation of the interfacial
width with time for the monatomic UDR model. The inset showsws(L) = aL+wI with a = 0.37
andwI = 0.86. In both figureskBT/J = 1.0,F = 1 ML s−1, andD = 100 s−1/site.

of the saturated mean square width varies logarithmically with the sizeL (see the inset). In
the monatomic UDP model, a particle prefers a site in a valley on the surface to one atop a
hill because such a site provides more chances to increase the number of bonds with nearest
neighbours for the particle. This preferential movement results in a downhill current and leads
to EW behaviour. The behaviour of the monatomic UDR model for the same growth conditions
turns out to be quite different. As shown in figure 1(b), the growth obeys a power law with
β = 1/4 and the dynamic exponentz = 4. The saturated interfacial widthws(L) ∼ L,
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which means means thatζ = 1 and surface diffusion is the main relaxation process. The
saturated structure factorS(k) ∼ k−γ and its scaling collapse yieldsγ = 4 with z = γ for the
monatomic UDR model.

4.2. Binary alloy growth: domain formation

The results of domain growth for the restricted PBA model are consistent with the Allen–Cahn
theory [30] for a NCOP. According to the theory, the normal velocity of a curved antiphase
boundary (APB) is linearly proportional to the mean curvature. The motion of the APB evolves
in such a way as to reduce the curvature in order to minimize surface tension by bulk diffusion.
In the case of domain growth by MBE, the pattern of ordered domains and antiphase boundaries
at early times affects the morphology of growing films and the average size of ordered clusters.
The layer number dependence of the motion of the APB shows non-trivial behaviour due to the
surface roughening and competition between ordering and disordering by thermal fluctuations.

Figure 2 shows vertical cross sections of a film after deposition of 320 layers. The rough
surface can be seen in this figure; the ordered domain size grows and the streaks of APBs extend
vertically from the substrate to the surface. Some of APBs, which have a parabolic shape, are
eliminated by the coarsening process. These are in good agreement with experiments [6,7,9]
and simulations of the CuPt type of ordering [31, 32]. Horizontal cross sections of the same
grown film indicate that the density of APBs decreases as the layer numberl increases, which

(a) (b)

Figure 2. Vertical cross sections of a film after deposition of 320 layers for the restricted PBA
model. Here,L = 160,kBT/J = 1.0, F = 1 ML s−1, andD = 80 s−1/site. A white (black)
square is an A (B) adatom. The two vertical cross sections are perpendicular to each other.
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means that the magnitude of LRO also increases as films grow due to the coarsening process
before finally saturating because of a finite size of the substrate.

Figure 3(a) shows the mean square domain sizeR2(l) for the restricted PBA model. The
solid line in figure 3(a) is a power-law fit forL = 80 and for largel > 200:

R2(l) ∼ l. (13)
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Figure 3. (a) The mean square domain sizeR2(l) for the restricted PBA model as a function of
the layer numberl for 206 L 6 80. The solid line is a power-law fit for largel. The inset shows
the saturated mean square domain sizeR2

s(L) ∼ L2. (b) The mean square domain sizeR2(l) for
the PBA model as a function of the layer numberl for 20 6 L 6 60. The two solid lines are
power-law fits to data;R2(l) ∼ l0.67 for l 6 50, andR2(l) ∼ l0.21 for l > 50. In both figures
kBT/J = 1.0,F = 1 ML s−1, andD = 80 s−1/site.
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The power-law behaviour ofR(l) ∼ l1/2 agrees very well with the results of the NCOP domain
coarsening at order–disorder phase transitions if one regardsl as timet . The saturated domain
sizeRs(L) ∼ L, shown in the inset of figure 3(a), is due to finite-size effects. Equation (13)
indicates that for largeL and l, the behaviour ofR(l) with zD = 2 is very similar to that
described by equation (1),R(t) ∼ t1/2 for the NCOP domain growth. For the PBA model,
R2(l) also shows a power-law behaviour with values of exponents different from that of the
restricted PBA model. There is a crossover: approximately,R(l) ∼ l1/3 for l 6 50, and
R(l) ∼ l0.11 for l > 50. Although at early stages, the exponent 1/3 happens to be equal to
that of the case of COP domain growth, a slight change in growth conditions (e.g. the ratio of
diffusion to flux and temperature) and interactions yields a different value of the exponent and
the crossover layer number.

At late times, the domain growth process is quite suppressed by large APBs present on
the surface mainly due to the lack of enough surface diffusion, and this may lead to a slow
growth of domain size for largel in the PBA model. Since the surface free energy of APBs
is higher than that of ordered domains, the ordering process proceeds mainly on the existing
ordered domain on the surface. However, due to a growing roughness of the surface as growth
proceeds, a particle may not find a site which minimizes the surface free energy.

4.3. Binary alloy growth: surface roughening

The saturated mean square interfacial width for the restricted PBA model is shown in the
inset of figure 4(a),w2

s(L) ∼ logL, implying ζ = 0. The behaviour ofws(L) agrees with
the experimental results for surface roughening in Si1−xGex film growth on Si at large length
scales [16], and is consistent with the theoretical description of the EW equation with the
scaling behaviourw2

s(L) ' (D/2πν) logL [17,33]. The decrease in the interfacial width for
small system sizes, shown in figure 4(a), is a finite-size effect due to the A-type substrate and
the strong Ising type of interactions in the model, which disappears in a large system size: see
the result forL = 160. The dynamic exponentγ = 2.0± 0.1 is obtained from the saturated
structure factorS(k) ∼ k−γ which is not shown here to avoid overcrowding of the figures.
We have also obtained an excellent scaling collapse for the structure factorS(k, t) with z = γ
using the scaling function given in equation (5). The exponents obtained obey the hyperscaling
relationz = 2ζ + d ′. The growth exponentβ = 0 withw(t) ∼ log t at late stages, as shown
in figure 4(a). This behaviour is the same as that of the monatomic UDP model. It seems that
the height restriction imposed on the restricted PBA model and the ordering process on the
surface induce a downhill surface current, and this again leads to EW behaviour.

For the PBA model, the interfacial width, shown in the inset of figure 4(b), does not show
any power-law behaviour, but log[w(L, t)] − wI ∼ tβ with β = 0.222, i.e.w(t) ∼ exp[tβ ].
A similar behaviour is also obtained for the film of the same PBA model grown on a perfect
ordered substrate. We have found an exponential system size dependence of the saturated
width, ws(L) ∼ eaL with a = 0.042. Although the exponential growth of the interfacial
width, often called rapid roughening, has been observed in several semiconductor surfaces at
low temperatures [34], the detailed growth mechanism leading to the behaviour is still unclear
to us. A careful examination of horizontal and vertical cross sections of a grown film and top
views of the surface at different times for the PBA model shows that the APBs are located at a
lower height on the surface. As seen in figure 3(b), a slow growth of domain size afterl > 50
implies that the density of the APB on the surface is large at late times. Since, in the UDP
model, a particle tries to increase its binding energy, the particle thus avoids a site at a lower
height if there is an APB near the site, due to the high surface free energy of the APB, and
prefers to move a site at an ordered cluster that is quite localized between the APBs. However,
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Figure 4. (a) The interfacial width as functions of system sizeL and timet for the restricted
PBA model. The saturated interfacial widthw2

s(L) ∼ logL is shown in the inset. (b) The scaled
interfacial width for the PBA model. The inset shows the interfacial width for the PBA model.
The saturated interfacial widthws(L) = eaL+wI with a = 0.042± 0.001 andwI = −0.465. Here
z = 4.5± 0.2 has been used for the scaling. In both figureskBT/J = 1.0, F = 1 ML s−1, and
D = 80 s−1/site.

this rough argument does not explain the exponential behaviour of the saturated interfacial
width and we have not found a theoretical continuum growth equation which explains the
unusual growth of surface fluctuations for the PBA model.

As shown in the inset of figure 5, the saturated interfacial width for the RBA model is
ws(L) ∼ L with ζ = 1. This behaviour is the same as that of the monatomic UDR model;
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Figure 5. (a) The scaled interfacial width for the RBA model withkBT/J = 1.0,F = 1 ML s−1,
andD = 80 s−1/site. Here,wI = 1.2 andz = 4 have been used. The inset shows the saturated
interfacial widthws(L) = aL +wI with a = 0.044± 0.001 andwI = 1.22± 0.02.

unlike the UDP model, binary alloy and monatomic UDR models are both well described by
the MH equation at the temperature.

For the scaling shown in figure 5,z = 4 has been used. Figure 5 indicates that for
1 � t � Lz, w(L, t) − wI ∼ t1/4, and at very late times and for largeL, β approaches
the asymptotic value 1/4. Since the domain sizeR(l) is not a self-averaging quantity, its
calculation requires a quite large number of independent runs. The domain sizeR(l) for the
RBA model has also been calculated forL 6 40, but is not shown here due to the modest
statistical averaging. However, we do not find any power-law behaviour inR(l) within error
bars.

At this moment, theoretical continuum equations available for the growth by MBE are
based on homoepitaxial film growth. Thus the effect of the substrate and inhomogeneous
interactions between different kinds of particle on the surface roughening is less clear, and
further studies are needed to produce a better understanding of binary mixture film growth.

5. Conclusions

In this paper we have considered multilayer A0.5B0.5 film growth on an A-type substrate and
homoepitaxial film growth by molecular beam epitaxy simulations. This study encompassed
both growth-induced domain coarsening and noise-induced surface roughening. Our models
include the random deposition of particles and surface diffusion, which are the essential features
of molecular beam epitaxy. The results of binary alloy growth models are compared to those
of the monatomic UDP and UDR models.

It turns out that in the monatomic UDR and RBA models, surface diffusion is the main
relaxation process at temperature, and the growth is well explained by the Mullins–Herring
equation with a linear size dependence of the saturated width in a steady state. On the other
hand, in the monatomic UDP and restricted PBA models, surface tension is a driving force
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which governs the growth of films and leads to a logarithmic growth of the interfacial width.
Thus, the UDP and restricted PBA models belong to the Edwards–Wilkinson universality class.
The behaviour of the interfacial width for the PBA model is quite different from other models
considered here, and there is no corresponding continuum growth equation which explains the
unusual growth of surface fluctuations.

The antiphase boundaries initially induced by the substrate and the random deposition of a
binary mixture are eliminated by the coarsening process, leading to a power-law growth of the
domain size as films grow. It seems that the exponent characterizing domain growth depends
on the models and growth conditions.

Simulation results of our binary alloy models indicate the interplay between the domain
growth and the surface roughening, but more extensive studies are needed to understand non-
equilibrium domain growth by molecular beam epitaxy and the coupling between growth-
induced pattern formation and growth-induced surface roughening.
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